Médical et Dentaire

Des scientifiques au Canada développent une bio-encre qui simule le tissu pulmonaire

La bio-impression 3D poursuit son développement en tant qu’outil prometteur dans le domaine de la médecine personnalisée. Dans cette optique, des chercheurs de l’Université McMaster, en Ontario, ont mis au point une nouvelle bio-encre capable d’imiter les propriétés mécaniques et structurelles du tissu pulmonaire. En d’autres termes, cette bio-encre permet l’impression de tissus capables de se contracter et de « respirer », à l’image des poumons humains. À ce stade, l’objectif principal est de favoriser la recherche médicale et l’élaboration de traitements. Toutefois, à plus long terme, les scientifiques envisagent des applications cliniques, notamment la réparation pulmonaire par transplantation ou implantation chez les patients atteints de BPCO ou de fibrose.

Contrairement à d’autres bio-encres qui nécessitent des températures basses pour l’impression et qui perdent leur forme après fabrication, ce nouveau matériau conserve des structures complexes tout en restant stable à la température corporelle. Soutenu financièrement par l’Université McMaster en 2024, ce projet a conduit à la création de la startup Tessella Biosciences, qui compte déjà ses premiers clients et bénéficie de retours positifs.

De gauche à droite, David González Martinez et José Morán-Mirabal travaillant avec la bioencre pour le tissu pulmonaire (Crédits photo : Georgia Kirkos, McMaster University)

Pourquoi développer une bio-encre pour le tissu pulmonaire ?

Ce projet est né pour répondre à une contrainte majeure dans la recherche sur les maladies respiratoires. Jeremy Hirota, professeur associé en médecine à l’Université McMaster et cofondateur de la start-up, rencontrait des difficultés à recréer des environnements cellulaires fidèles à la réalité, en particulier pour l’étude de pathologies telles que la BPCO ou la fibrose pulmonaire. « La majorité des recherches biomédicales dans ce domaine s’appuie sur des supports rigides comme des plaques de culture ou des boîtes de Pétri, très éloignés des conditions physiologiques d’un poumon humain », explique-t-il.

Pour surmonter cette limite, Hirota s’est entouré de José Moran-Mirabal, professeur au département de chimie et de biologie chimique, et de David Gonzalez Martinez, doctorant. De cette collaboration interdisciplinaire est née une bio-encre, spécialement formulée pour reproduire l’élasticité et la capacité d’étirement du tissu pulmonaire, grâce à une composition et une rhéologie adaptées.

Les chercheurs décrivent cette bio-encre comme une solution « plug-and-play », compatible avec les bio-imprimantes 3D actuellement disponibles. Elle permet de produire des structures tridimensionnelles complexes en moins d’une heure, avec une haute résolution. Si elle est déjà prometteuse pour la modélisation pulmonaire et les tests de toxicité ou de réponse aux médicaments, l’équipe envisage également des applications cliniques futures. Parmi celles-ci : la fabrication de greffons dermiques pour les grands brûlés ou encore de fragments fonctionnels de tissu pulmonaire destinés à des procédures de réparation ou de transplantation.

À plus long terme, les chercheurs envisagent la possibilité d’imprimer biologiquement des organes entiers, une ambition majeure dans le domaine de la bio-impression 3D. Toutefois, ils reconnaissent que cet objectif demeure confronté à d’importants défis, tant sur le plan scientifique que réglementaire.

Que pensez-vous de la nouvelle teinture biologique pour les tissus pulmonaires? N’hésitez pas à partager votre avis dans les commentaires de l’article. Vous êtes intéressés par l’actualité de l’impression 3D médicale et dentaire ? Cliquez ICI. Vous pouvez aussi nous suivre sur Facebook ou LinkedIn !

*Crédits photo de couverture : McMaster University

Share
Publié par

Articles récents

Comment fiabiliser l’impression 3D métal et encourager son adaption ?

L’un des défis les plus tenaces dans la fabrication additive est sans doute la fiabilité…

21 octobre 2025

Une tête d’impression conçue pour la santé : la série vipro-HEAD de qualité médicale

Dans le domaine de la fabrication additive médicale, une attention particulière est accordée aux matériaux…

20 octobre 2025

Débuter en impression 3D : comment choisir la bonne résine ? 

Après avoir franchi le cap de l'achat de votre première imprimante 3D résine, il est…

17 octobre 2025

Un prototype de vélo conçu en impression 3D et PA12

L'utilisation de la fabrication additive comme outil de développement et de test de nouveaux produits…

16 octobre 2025

Transformer les déchets du lait en filament d’impression 3D : info ou intox ?

Deux professeurs de l'université du Wisconsin-Platteville ont dévoilé une nouvelle avancée qui combine l'agriculture et…

15 octobre 2025

8 raisons d’utiliser des polymères hautes performances en fabrication additive

Les polymères hautes performances (ou HPP selon l'acronyme anglais) sont utilisés depuis plusieurs décennies dans…

14 octobre 2025

Ce site utilise des cookies anonymes de visite, en poursuivant vous acceptez leur utilisation.